Måndag 24 November | 20:06:36 Europe / Stockholm

Kalender

Est. tid*
2025-10-21 - Extra Bolagsstämma 2025
2025-08-28 - Kvartalsrapport 2025-Q2
2025-04-14 - X-dag ordinarie utdelning AIX 0.00 NOK
2025-04-11 - Årsstämma
2025-03-28 - Bokslutskommuniké 2024
2024-11-01 - Extra Bolagsstämma 2024
2024-08-28 - Kvartalsrapport 2024-Q2
2024-04-04 - X-dag ordinarie utdelning AIX 0.00 NOK
2024-04-03 - Årsstämma
2024-03-20 - Bokslutskommuniké 2023
2023-08-30 - Kvartalsrapport 2023-Q2
2023-03-31 - X-dag ordinarie utdelning AIX 0.00 NOK
2023-03-30 - Årsstämma
2023-03-21 - Bokslutskommuniké 2022
2023-03-08 - Split AIX 8:1
2023-02-27 - Extra Bolagsstämma 2023
2022-11-10 - Extra Bolagsstämma 2022
2022-08-30 - Kvartalsrapport 2022-Q2
2022-04-08 - X-dag ordinarie utdelning AIX 0.00 NOK
2022-04-07 - Årsstämma
2022-03-29 - Bokslutskommuniké 2021
2021-05-05 - X-dag ordinarie utdelning AIX 0.00 NOK
2021-05-04 - Årsstämma
2021-04-20 - Bokslutskommuniké 2020
2020-09-29 - Extra Bolagsstämma 2020

Beskrivning

LandNorge
ListaEuronext Growth Oslo
SektorInformationsteknik
IndustriProgramvara
Ayfie International är verksamma inom teknikbranschen. Bolaget är specialiserade inom utveckling av big data. Programvaran är egenutvecklad och används huvudsakligen för analys och uppföljning. Kunderna består av företagskunder verksamma i ett flertal olika sektorer. Utöver huvudverksamheten erbjuds även diverse mervärdestjänster. Störst verksamhet återfinns inom den nordiska marknaden.

Intresserad av bolagets nyckeltal?

Analysera bolaget i Börsdata!

Vem äger bolaget?

All ägardata du vill ha finns i Holdings!

2025-11-04 09:52:20
Oslo, November 4th, 2025 - Ayfie International AS (AIX) announces that the
company is now exploring and has achieved promising results with Model Context
Protocol (MCP). MCP is a technology that enables small and medium-sized
businesses to connect their internal software systems directly to private large
language models (LLMs).

In practice, this means that an AI can retrieve reports from accounting systems,
summarize sales processes with suggested next steps, or combine customer service
inquiries with product data and roadmap information - all within one secure
interface.

Ayfie plans to launch the solution during the first half of 2026.

While RAG (Retrieval-Augmented Generation) traditionally requires heavier data
setups and complex integrations, MCP offers a lighter and more dynamic approach
where the language model connects directly to existing systems. Ayfie's Indexing
Layer combines the advantages of both methods - low complexity and cost, yet
with the precision and performance of enterprise-grade solutions.

MCP represents a "lightweight" approach to RAG technology, making it possible to
connect simpler systems such as Tripletex, Visma, and SharePoint without heavy
infrastructure requirements. This opens an entirely new market for Ayfie: small
and medium-sized businesses that previously lacked the financial or technical
capacity to adopt advanced enterprise AI.

Ayfie combines MCP with its proprietary Indexing Layer to solve the main
bottleneck in today's MCP implementations. While standard APIs often return up
to 500,000 tokens, Ayfie's technology reduces this to around 5,000 tokens per
request - resulting in 99% lower token usage, 10x faster performance, and up to
90% reduced costs. Tokens are text segments that AI breaks down and uses to
understand and generate language.

With MCP and indexing, Ayfie can now offer a cost-efficient and
easy-to-implement solution that makes advanced AI accessible even to businesses
with fewer than 50 employees - a segment representing over 95% of Norwegian
limited companies.

For further information, please contact:

Herman Sjøberg
CEO, Ayfie International
+47 926 62 233
herman.sjoberg@ayfie.com

About Ayfie | ayfie.com
Ayfie is a leading software provider specializing in data search, RAG and
generative AI. With over 15 years of experience, we have honed our expertise in
transforming unstructured data into valuable insights that benefit both large
enterprises, medium-sized businesses, and individuals.